滤波器的原理
简单来说,滤波器的原理就是过滤掉不想要的信号电流,放行想要保留的信号电流。
高频滤波器,也叫低通滤波器,是指需要过滤掉的干扰信号的频率高于想要保留的信号电流的频率。之所以也叫低通滤波器,言下之意是说,允许低频率的信号电流通过。
不同结构的滤波电路主要有两点不同:
1.电路中的滤波器件越多,则滤波器阻带的衰减越大,滤波器通带与阻带之间的过渡带越短。
2.不同结构的滤波电路适合于不同的源阻抗和负载阻抗,它们的关系应遵循阻抗失配原则。
但要注意的是,实际电路的阻抗很难估算,特别是在高频时(电磁干扰问题往往发生在高频),由于电路寄生参数的影响,电路的阻抗变化很大,而且电路的阻抗往往还与电路的工作状态有关,再加上电路阻抗在不同的频率上也不一样。因此,在实际中,哪一种滤波器有效主要靠试验的结果确定。
滤波器的使用场景
为了提高电源的品质、电路的线性、减少各种杂波和非线性失真干扰和谐波干扰等均使用滤波器。
滤波器的工作机理,分为以下几种:
滤波器是由电感和电容组成的低通滤波电路所构成,它允许有用信号的电流通过,对频率较高的干扰信号则有较大的衰减。由于干扰信号有差模和共模两种,因此滤波器要对这两种干扰都具有衰减作用。
其基本工作机理有三种:
A)利用电容通高频隔低频的特性,将火线、零线高频干扰电流导入地线(共模),或将火线高频干扰电流导入零线(差模);
B)利用电感线圈的阻抗特性,将高频干扰电流反射回干扰源;
C)利用干扰抑制铁氧体可将一定频段的干扰信号吸收转化为热量的特性,针对某干扰信号的频段选择合适的干扰抑制铁氧体磁环、磁珠直接套在需要滤波的电缆上即可
电源线滤波器的高频特性差的主要原因有两个,一个是内部寄生参数造成的空间耦合,另一个是滤波器件的不理想性。因此,改善高频特性的方法也是从这两个方面着手。
内部结构:滤波器的连线要按照电路结构向一个方向布置,在空间允许的条件下,电感与电容之间保持一定的距离,必要时,可设置一些隔离板,减小空间耦合。
电感:按照前面所介绍的方法控制电感的寄生电容。必要时,使用多个电感串联的方式。
差模滤波电容:电容的引线要尽量短。要理解这个要求的含义:电容与需要滤波的导线(火线和零线)之间的连线尽量短。如果滤波器安装在线路板上,线路板上的走线也会等效成电容的引线。这时,要注意保证时机的电容引线最短。
共模电容:电容的引线要尽量短。对这个要求的理解和注意事项同差模电容相同。但是,滤波器的共模高频滤波特性主要靠共模电容保证,并且共模干扰的频率一般较高,因此共模滤波电容的高频特性更加重要。使用三端电容可以明显改善高频滤波效果。但是要注意三端电容的正确使用方法。即,要使接地线尽量短,而其它两根线的长短对效果几乎没有影响。必要时可以使用穿心电容,这时,滤波器本身的性能可以维持到1GHz以上。当设备的辐射发射在某个频率上不满足标准的要求时,不要忘记检查电源线在这个频率上的共模传导发射,辐射发射很可能是由这个共模发射电流引起的。
滤波器的选择
根据干扰源的特性、频率范围、电压和阻抗等参数及负载特性的要求,适当选择滤波器,一般考虑:
其一,要求电磁干扰滤波器在相应工作频段范围内,能满足负载要求的衰减特性,若一种滤波器衰减量不能满足要求时,则可采用多级联,可以获得比单级更高的衰减,不同的滤波器级联,可以获得在宽频带内良好衰减特性。
其二,要满足负载电路工作频率和需抑制频率的要求,如果要抑制的频率和有用信号频率非常接近时,则需要频率特性非常陡峭的滤波器,才能满足把抑制的干扰频率滤掉,只允许通过有用频率信号的要求。
其三,在所要求的频率上,滤波器的阻抗必须与它连接干扰源阻抗和负载阻抗相失配,如果负载是高阻抗,则滤波器的输出阻抗应为低阻;如果电源或干扰源阻抗是低阻抗,则滤波器的输入阻抗应为高阻;如果电源阻抗或干扰源阻抗是未知的或者是在一个很大的范围内变化,很难得到稳定的滤波特性,为了获得滤波器具有良好的比较稳定的滤波特性,可以在滤波器输入和输出端,同时并接一个固定电阻。
其四,滤波器必须具有一定耐压能力,要根据电源和干扰源的额定电压来选择滤波器,使它具有足够高的额定电压,以保证在所有预期工作的条件下都能可靠地工作,能够经受输入瞬时高压的冲击。
其五,滤波器允许通过应与电路中连续运行的额定电流一致。额定电流高了,会加大滤波器的体积和重量;额定电流低了,又会降低滤波器的可靠性,其六,滤波器应具有足够的机械强度,结构简单、重量轻、体积小、安装方便、安全可靠。